Apr.28, 2006

Preliminary

Members of Flexon<sup>™</sup> Family



# FTM-9712S-SL20(E)(G)

(IEEE 802.3ah<sup>™</sup>-2004 1000Base-PX20-D)



## **Features**

- Single fiber bi-directional data links with symmetric 1.25Gbps upstream and 1.25Gbps downstream
- Integrated with micro-optics WDM filter for dual wavelength Tx/Rx operation at 1490/1310nm
- 1490nm continuous-mode transmitter with DFB laser
- 1310nm burst-mode receiver with APD-TIA
- Optical isolator built in for extreme Return Loss tolerance
- Resetless burst-mode receiver design
- Support more than 24dB dynamic range
- 0 to 70°C operating temperature (S-SL20) -40 to 75°C operating temperature (S-SL20E)
- Spring-latch SFP (Small Form-factor Pluggable) package with SC receptacle optical interface.
- Detailed product information in EEPROM
- Digital diagnostic interface compliant with SFF-8472 Rev 9.4
- Single 3.3V power supply
- Maximum 1W total power dissipation
- LVPECL compatible data input/output interface
- LVTTL transmitter disable control
- LVTTL transmitter laser failure alarm
- LVTTL receiver Loss Of Signal(LOS) indication
- Low EMI and excellent ESD protection
- Class I laser safety standard IEC-60825 compliant
- RoHS compliance (S-SL20G and S-SL20EG)

# **Applications**

**Gigabit Ethernet Passive Optical Networks** (GE-PON) - OLT side

## Standard

- Compliant with IEEE Std 802.3ah™ -2004
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with SFF-8074i Rev 1.0
- Compliant with SFF-8472 Rev 9.4

# Description

FTM-9712S-SL20(E)(G) is Optical Line Terminal (OLT) compliant with IEEE 802.3ah™-2004 1000BASE-PX20 application.

The transceiver is the high performance module for 1.25Gbps data link in single fiber by using 1490nm continuous-mode transmitter and 1310nm burst-mode receiver. The transmitter section uses a multiple guantum well 1490nm DFB laser and is Cass I laser compliant product according to international safety standard IEC-60825. The receiver section uses an integrated 1310nm APD (Avalanche Photo Diode) and preamplifier mounted in an optical header and limiting post-amplifier IC. Unlike the conventional burst-mode receiver, the receiver does not require reset pulse to receive optical data packets with different optical power.

The optical output can be disabled by LVTTL logic high-level input of TX Disable. TX Fault is provided to indicate that degradation of the laser. Loss of Signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

Enhanced Digital Diagnostic Monitoring Interface (DDMI) compliant with SFF-8472 Rev 9.4 has been incorporated into the transceivers. It allows real time access to the transcevier operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage by reading a built-in memory with I<sup>2</sup>C interface. For further information, please refer to SFF-8472 Rev 9.4.

## **Regulatory Compliance**

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Flexon<sup>™</sup> regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of documentation.

| Feature                          | Standard                      | Performance                          |  |
|----------------------------------|-------------------------------|--------------------------------------|--|
| Electrostatic Discharge          | MIL-STD-883E                  |                                      |  |
| (ESD) to the Electrical Pins     | Method 3015.7                 | Class 1(>500 V)                      |  |
| Electrostatic Discharge (ESD) to | IEC 61000-4-2                 | Compliant with standards             |  |
| SC Receptacle                    | GR-1089-CORE                  | Compliant with standards             |  |
|                                  | FCC Part 15 Class B           |                                      |  |
| Electromagnetic                  | EN55022 Class B (CISPR 22B)   | Compliant with standards             |  |
| Interference (EMI)               | VCCI Class B                  |                                      |  |
| Immunity                         | IEC 61000-4-3                 | Compliant with standards             |  |
| Leser Fue Cofety                 | FDA 21CFR 1040.10 and 1040.11 |                                      |  |
| Laser Eye Safety                 | EN60950, EN (IEC) 60825-1,2   | Compliant with Class I laser product |  |
| Component Recognition            | UL and CSA                    | Compliant with standards             |  |
| RoHS                             | 2002/95/EC 4.1&4.2            | Compliant with standards             |  |

#### Table 1 - Regulatory Compliance

# Absolute Maximum Ratings

Absolute Maximum Ratings are those values, beyond which, some damage may occur to the devices. Exposure to conditions above the Absolute Maximum Ratings listed in Table 2 may negatively impact the reliability of the products.

#### Table 2 - Absolute Maximum Ratings

| Parameter                     | Symbol           | Min. | Max. | Unit | Note               |
|-------------------------------|------------------|------|------|------|--------------------|
| Storage Ambient Temperature   | T <sub>STG</sub> | -40  | 85   | °C   |                    |
| Operating Ambient Temperature | т                | 0    | 70   | °C   | FTM-9712S-SL20(G)  |
| (Note 1)                      | T <sub>OPR</sub> | -40  | 75   | U    | FTM-9712S-SL20E(G) |
| Operating Humidity            | H <sub>OPR</sub> | 5    | 95   | %    |                    |
| Power Supply Voltage          | V <sub>CC</sub>  | 0    | 4    | V    |                    |
| Input Voltage                 |                  | GND  | Vcc  | V    |                    |
| Receiver Damaged Threshold    |                  | 0    |      | dBm  |                    |

Note 1: When ambient temperature is above 60°C, airflow at rate higher than 1m/sec is required

## **Recommended Operating Conditions**

#### Table 3 - Recommended Operating Conditions

| Parameter                     | Symbol           | Min. | Тур. | Max. | Unit   | Note               |
|-------------------------------|------------------|------|------|------|--------|--------------------|
| Power Supply Voltage          | V <sub>CC</sub>  | 3.13 | 3.3  | 3.47 | V      | 3.3V±5%            |
| Operating Ambient Temperature | т                | 0    |      | 70   | ∧ °C   | FTM-9712S-SL20(G)  |
| (Note 1)                      | T <sub>OPR</sub> | -40  |      | 75   |        | FTM-9712S-SL20E(G) |
| Operating Humidity Range      | H <sub>OPR</sub> | 5    |      | 95   | %      | ~                  |
| Data Rate                     |                  |      | 1.25 |      | Gbit/s |                    |
| Data Rate Drift               |                  | -100 |      | +100 | PPM    |                    |

Note 1: When ambient temperature is above 60°C, airflow at rate higher than 1m/sec is required

## **Optical and Electrical Characteristics**

#### Table 4 - Transmitter Optical and Electrical Characteristics

 FTM-9712S-SL20(G)
 0°C <T<sub>OPR</sub><70°C and 3.13V<V<sub>CC</sub><3.47V</th>

 FTM-9712S-SL20E(G)
 -40°C <T<sub>OPR</sub><75°C and 3.13V<V<sub>CC</sub><3.47V</td>

| Parameter                                   | Symbol                                | Min. | Тур. | Max. | Unit       | Notes |
|---------------------------------------------|---------------------------------------|------|------|------|------------|-------|
| Optical Center Wavelength                   | λ                                     | 1480 |      | 1500 | nm         |       |
| Optical Spectrum Width (-20dB)              | Δλ                                    |      |      | 1    | nm         |       |
| Side Mode Suppression Ratio                 | SMSR                                  | 30   |      |      | dB         |       |
| Average Launch Power (BOL)                  | Р                                     | +3   |      | +7   | dBm        |       |
| Average Launch Power (EOL)                  | P <sub>OUT</sub>                      | +2   |      | +7   | dBm        | 1     |
| Average Launch Power-OFF Transmitter        | P <sub>OFF</sub>                      |      |      | -39  | dBm        |       |
| Extinction Ratio                            | ER                                    | 9    |      |      | dB         | 2     |
| Total Jitter                                | TJ                                    |      |      | 0.43 | UI         | 2     |
| Rise/Fall Time (20%-80%)                    | T <sub>R</sub> /T <sub>F</sub>        |      |      | 260  | ps         | 2,3   |
| RIN <sub>15</sub> OMA                       |                                       |      |      | -115 | dB/Hz      |       |
| Optical Return Loss Tolerance               |                                       |      |      | 12   | dB         |       |
| Transmitter Reflectance                     |                                       |      |      | -10  | dB         |       |
| Transmitter and dispersion Penalty          | TDP                                   |      |      | 2.3  | dB         | 4     |
| Transmitter Eye Diagram                     | Compliant With IEEE Std 802.3ah™-2004 |      |      |      |            | 2,5   |
| Data Input Differential Swing               | V <sub>IN</sub>                       | 200  |      | 1600 | $mV_{P-P}$ | 6     |
| Input Differential Impedance                | Z <sub>IN</sub>                       | 90   | 100  | 110  | Ω          |       |
| Power Supply Current                        | Ісс_тх                                |      |      | 180  | mA         |       |
| Transmitter Disable Voltage - Low           | V <sub>TDIS, L</sub>                  | 0    |      | 0.8  | V          | 7     |
| Transmitter Disable Voltage - High          | V <sub>TDIS, H</sub>                  | 2.0  |      | Vcc  | V          | 1     |
| Transmitter Fault Indication Voltage - Low  | V <sub>TFI, L</sub>                   | 0    |      | 0.4  | V          | 8     |
| Transmitter Fault Indication Voltage - High | V <sub>TFI, H</sub>                   | 2.4  |      | Vcc  | V          | 0     |

Note 1: Launched into 9/125um SMF.

Note 2: Measured with PRBS 2<sup>7</sup>-1 test pattern @1.25Gbps.

Note 3: Measured with the Bessel-Thompson filter OFF.

Note 4: Maximum sensitivity penalty due to transmitter and dispersion effect through 20km of SMF optical fiber. Note 5: Transmitter eye mask definition {0.22UI, 0.375UI, 0.20UI, 0.20UI, 0.30UI}.

Note 6: Compatible with LVPECL input, AC coupled internally. (See <u>Recommended Interface Circuit</u>)

Note 7: TX Disable (See <u>Pin Function Definitions</u>)

Note 8: TX Fault (See <u>Pin Function Definitions</u>)

#### Table 5 - Receiver Optical and Electrical Characteristics (0°C <T<sub>OPR</sub><70°C and 3.13V<V<sub>CC</sub><3.47V)

| Parameter                           | Symbol                           | Min.    | Тур.       | Max.            | Unit       | Notes |
|-------------------------------------|----------------------------------|---------|------------|-----------------|------------|-------|
| Operating Wavelength                |                                  | 1260    |            | 1360            | nm         |       |
| Sensitivity                         | P <sub>SEN</sub>                 | () / Ja |            | -30             | dBm        | 1     |
| Saturation                          | Psat                             | -6      | $\bigcirc$ |                 | dBm        |       |
| Receiver Threshold Settling Time    |                                  |         | $\diamond$ | 250             | ns         | 1,2   |
| Dynamic Range                       |                                  | -30     |            | -6              | dBm        | 1,3   |
| Loss of Signal Deassert Level       | PLOSD                            |         |            | -31             | dBm        | 4     |
| Loss of Signal Assert Level         | PLOSA                            | -45     |            |                 | dBm        | 5     |
| LOS Hysteresis                      | PLOSD-PLOSA                      | 0.5     |            | 6               | dB         |       |
| Power Supply Current                |                                  |         |            | 120             | mA         | 6     |
| Receiver Reflectance                |                                  |         |            | -12             | dB         |       |
| Data Output Voltage - Low           | V <sub>OL</sub> -V <sub>CC</sub> | -1.81   |            | -1.62           | V          |       |
| Data Output Voltage - High          | V <sub>он</sub> -V <sub>сс</sub> | -1.02   |            | -0.88           | V          |       |
| Data Output Differential Swing      | V <sub>OUT</sub>                 | 400     |            | 1600            | $mV_{P-P}$ | 7     |
| Loss of Signal (LOS) Voltage - Low  | V <sub>LOS, L</sub>              | 0       |            | 0.8             | V          | 0     |
| Loss of Signal (LOS) Voltage - High | V <sub>LOS, H</sub>              | 2.0     |            | V <sub>cc</sub> | V          | 8     |
| Loss of Signal (LOS) Assert Time    | T <sub>ASS</sub>                 |         |            | 500             | ns         |       |
| Loss of Signal (LOS) Deassert Time  | T <sub>DAS</sub>                 |         |            | 500             | ns         |       |

Note 1: Measured with a PRBS  $2^7$ -1 test pattern @1.25Gbps and ER=10dB, BER = $10^{-12}$ .

Note 2: See Figure 1, 2. For multiple ONUs application, It isn't easy to test  $T_{SETTLING}$  directly, but there is a relationship  $T_{SETTLING} = T_{GAP} - T_{GUARD}$  when  $T_{ON} = T_{OFF}$ , then  $T_{SETTLING}$  can be calculated by  $T_{GAP}$  and a certain guard time at ONU side.

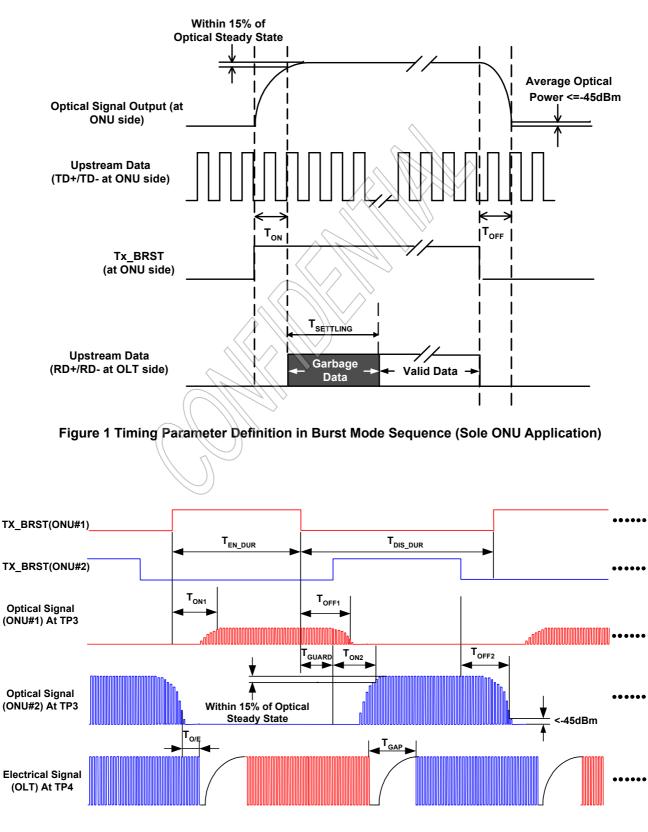
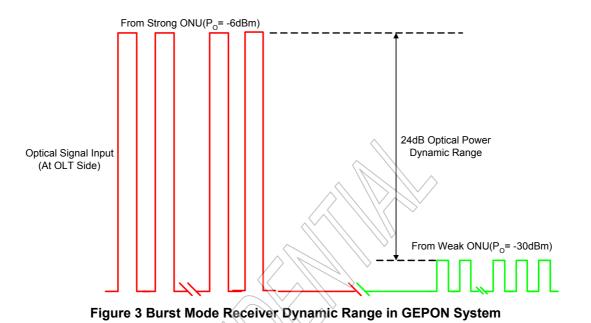
Note 3: See Figure 3.  $T_{\text{GAP}}$  be less than 250ns is guaranteed.

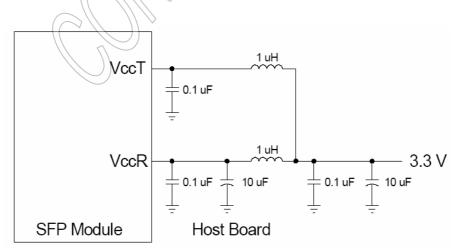
- Note 4: An increase in optical power above the specified level will cause Los of Signal (LOS) output to switch from a high state to a low state.
- Note 5: A decrease in optical power below the specified level will cause Los of Signal (LOS) output to switch from a low state to a high state.
- Note 6: Supply current excluding receiver output load.
- Note 7: LVPECL output, DC coupled internally, guaranteed in the full range of input optical power (-6dBm to -31dBm) (See <u>Recommended Interface Circuit</u>)

Note 8: LOS (See Pin Function Definitions)

FTM-9712S-SL20(E)(G) Preliminary Data Sheet

Apr.28, 2006



Figure 2 Timing Parameter Definition in Burst Mode Sequence (Dual ONUs Application)

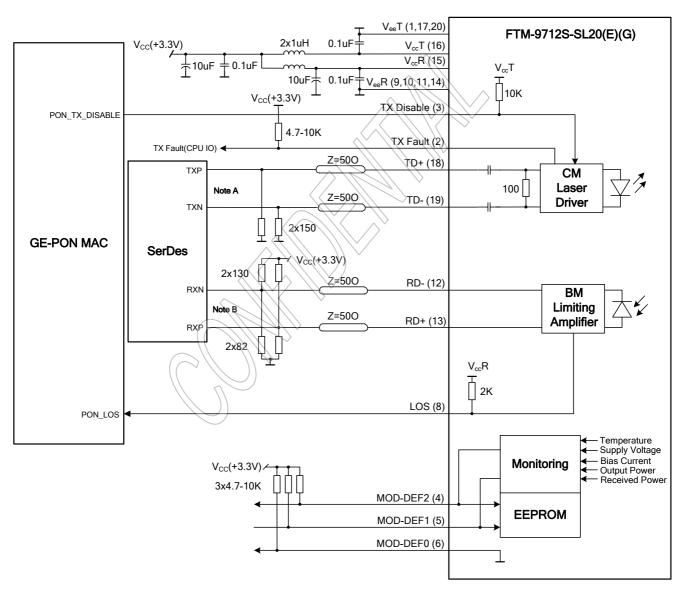




# Recommended Host Board Power Supply Circuit

Figure 4 shows the recommended host board supply circuit.




#### Figure 4 Recommended Host Board Power Supply Filtering Network

FTM-9712S-SL20(E)(G) Fiberxon Preliminary Data Sheet

Apr.28, 2006

### **Recommended Interface Circuit**

Figure 5 shows the recommended interface schemes.



**Figure 5 Recommended Interface Circuit** 

Note A: Circuit assumes open emitter output Note B: Circuit assumes that proper internal bias voltage is not provided

#### **Pin Definitions**

Figure 6 below shows the pin numbering of SFP electrical interface (Golden Finger). The pin functions are described in Table 6 and the accompanying notes.

FTM-9712S-SL20(E)(G) Fiberxon

20km transmission with Monitoring Function

Preliminary Data Sheet

**ber×on** Apr.28, 2006

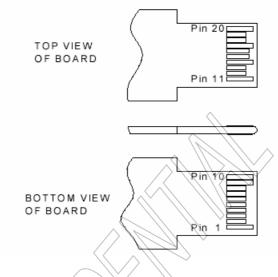



Figure 6 SFP Pin View (Golden Finger)

#### Table 6 - Pin Function Definitions

| Pin No. | Name              | Description                  | Notes |
|---------|-------------------|------------------------------|-------|
| 1       | V <sub>ee</sub> T | Transmitter Ground           |       |
| 2       | TX Fault          | Transmitter Fault Indication | 1     |
| 3       | TX Disable        | Transmitter Disable          | 2     |
| 4       | MOD-DEF2          | Module Definition 2          |       |
| 5       | MOD-DEF1          | Module Definition 1          | 3     |
| 6       | MOD-DEF0          | Module Definition 0          |       |
| 7       | NC                | Reserved for Module Tuning   | 4     |
| 8       | LOS               | Loss of Signal               | 5     |
| 9       | V <sub>ee</sub> R | Receiver Ground              |       |
| 10      | V <sub>ee</sub> R | Receiver Ground              |       |
| 11      | V <sub>ee</sub> R | Receiver Ground              |       |
| 12      | RD-               | Inv. Receiver Data Out       | 7     |
| 13      | RD+               | Receiver Data Out            | 1     |
| 14      | V <sub>ee</sub> R | Received Ground              |       |
| 15      | V <sub>cc</sub> R | Receiver Power               | 6     |
| 16      | V <sub>cc</sub> T | Transmitter Power            | 0     |
| 17      | V <sub>ee</sub> T | Transmitter Ground           |       |
| 18      | TD+               | Transmit Data In             | 8     |
| 19      | TD-               | Inv. Transmit Data In        | °     |
| 20      | V <sub>ee</sub> T | Transmitter Ground           |       |

Note 1: TX Fault is an open collector/drain output, which should be pulled up with a 4.7K-10KΩ resistor on the host board. Pull up voltage between 2.0V and V<sub>cc</sub>T, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note 2: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the

FTM-9712S-SL20(E)(G) Fiber×on Preliminary Data Sheet

Apr.28, 2006

module with a 4.7-10 K $\Omega$  resistor. Its states are: Low (0-0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0-3.465V): Transmitter Disabled **Open: Transmitter Disabled** 

Note 3: MOD-DEF0,1,2. These are the module definition pins. They should be pulled up with a  $4.7K-10K\Omega$  resistor on the host board. The pull-up voltage shall be  $V_{cc}T$  or  $V_{cc}R$ . MOD-DEF0 is grounded by the module to indicate that the module is present MOD-DEF1 is the clock line of two-wire serial interface for serial D

MOD-DEF2 is the data line of two-wire serial interface for serial ID

- Note 4: Reserved for module tuning and compulsive for system designer that any circuit doesn't be connected to it.
- Note 5: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a  $4.7K-10K\Omega$  resistor. Pull up voltage between 2.0V and  $V_{cc}T$ , R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- Note 6: V<sub>cc</sub>R and V<sub>cc</sub>T are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300 mA. Recommended host board power supply filtering is shown in figure 4. Inductors with DC resistance of less than  $1\Omega$  should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SEP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.
- Note 7: These are the differential receiver outputs. They are DC coupled 100  $\Omega$  differential lines which should be terminated with 100 Ω (differential) at the user SERDES. (See Recommended Interface Circuit)
- Note 8: These are the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. (See Recommended Interface Circuit)

## **Mechanical Design Diagram**

The mechanical design diagram is shown in figure 7. (Dimension: mm)

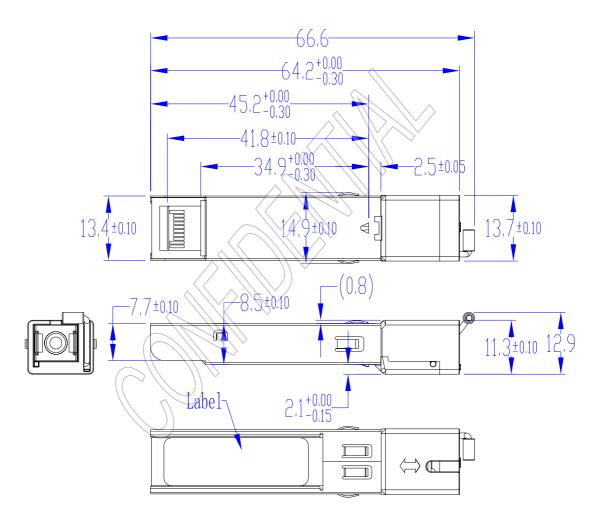



Figure 7 Mechanical Design Diagram (SFP with Spring-latch)

## **EEPROM** Information

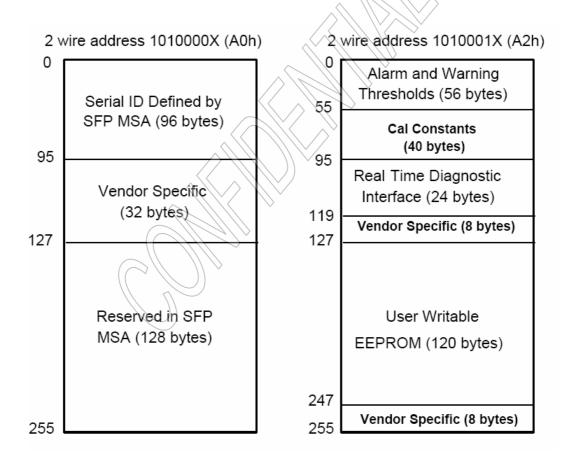
The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X(A0h). The memory contents refer to Table 7.

| Addr. | Field Size<br>(Bytes) | Name of Field   | Hex                     | Description     |
|-------|-----------------------|-----------------|-------------------------|-----------------|
| 0     | 1                     | Identifier      | 03                      | SFP transceiver |
| 1     | 1                     | Ext. Identifier | 04                      | MOD4            |
| 2     | 1                     | Connector       | 01                      | SC              |
| 3-10  | 8                     | Transceiver     | 00 00 00 80 00 00 00 00 | BASE-PX         |

#### Table7 – EEPROM Serial ID Memory Contents (A0h)

FTM-9712S-SL20(E)(G) Fiberxon

Preliminary Data Sheet


••••·

| 11     | 1  | Encoding                      | 01                                                 | 8B10B                                                                                                                    |
|--------|----|-------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 12     | 1  | BR, Nominal                   | 0D                                                 | 1.25Gbps                                                                                                                 |
| 13     | 1  | Reserved                      | 00                                                 |                                                                                                                          |
| 14     | 1  | Length (9um)-km               | 14                                                 | 20(km)                                                                                                                   |
| 15     | 1  | Length (9um)                  | C8                                                 | 200(100m)                                                                                                                |
| 16     | 1  | Length (50um)                 | 00                                                 | Not Support MMF                                                                                                          |
| 17     | 1  | Length (62.5um)               | 00                                                 | Not Support MMF                                                                                                          |
| 18     | 1  | Length (Copper)               | 00                                                 | Not Support Copper                                                                                                       |
| 19     | 1  | Reserved                      | 00                                                 |                                                                                                                          |
| 20-35  | 16 | Vendor name                   | 46 49 42 45 52 58 4F 4E<br>20 49 4E 43 2E 20 20 20 | "FIBERXON INC." (ASCII)                                                                                                  |
| 36     | 1  | Reserved                      | 00                                                 |                                                                                                                          |
| 37-39  | 3  | Vendor OUI                    | 00 00 00                                           |                                                                                                                          |
|        |    |                               | 46 54 4D 2D 39 37 31 32<br>53 2D 53 4C 32 30 20 20 | "FTM-9712S-SL20" (ASCII)                                                                                                 |
| 40-55  | 16 | Vendor PN                     | 46 54 4D 2D 39 37 31 32<br>53 2D 53 4C 32 30 45 20 | "FTM-9712S-SL20E" (ASCII)                                                                                                |
|        |    |                               | 46 54 4D 2D 39 37 31 32<br>53 2D 53 4C 32 30 47 20 | "FTM-9712S-SL20G" (ASCII)                                                                                                |
|        |    |                               | 46 54 4D 2D 39 37 31 32<br>53 2D 53 4C 32 30 45 47 | "FTM-9712S-SL20EG" (ASCII)                                                                                               |
| 56-59  | 4  | Vendor Rev                    | xx xx 20 20                                        | ASCII("31 30 20 20" means 1.0 Revision)                                                                                  |
| 60-61  | 2  | Wavelength                    | 05 D2                                              | 1490nm Laser Wavelength                                                                                                  |
| 62     | 1  | Reserved                      | 00                                                 |                                                                                                                          |
| 63     | 1  | CC_BASE                       | хх                                                 | Check sum of byte 0-62                                                                                                   |
| 64-65  | 2  | Options                       | 00 1A                                              | LOS,TX_FAULT and TX_DISABLE                                                                                              |
| 66     | 1  | BR, max                       | 00                                                 |                                                                                                                          |
| 67     | 1  | BR, min                       | 00                                                 |                                                                                                                          |
| 68-83  | 16 | Vendor SN                     | xx xx xx xx xx xx xx xx xx xx<br>xx xx xx x        | ASCII                                                                                                                    |
| 84-91  | 8  | Date code                     | xx xx xx xx xx xx 20 20                            | Year(2 bytes),Month(2 bytes),Day(2 bytes)                                                                                |
| 92     | 1  | Diagnostic<br>Monitoring Type | 58                                                 | Compliant with SFF-8472 V9.4<br>Externally Calibrated<br>Received power measurement type<br>-Average Power               |
| 93     | 1  | Enhanced Options              | В0                                                 | Diagnostics (Optional Alarm/warning flags)<br>Soft TX_FAULT monitoring implemented<br>Soft RX_LOS monitoring implemented |
| 94     | 1  | SFF-8472<br>Compliance        | 02                                                 | Diagnostics Compliance(SFF-8472 V9.4)                                                                                    |
| 95     | 1  | CC_EXT                        |                                                    | Check sum of byte 64-94                                                                                                  |
| 96-255 | 64 | Vendor Specific               |                                                    |                                                                                                                          |

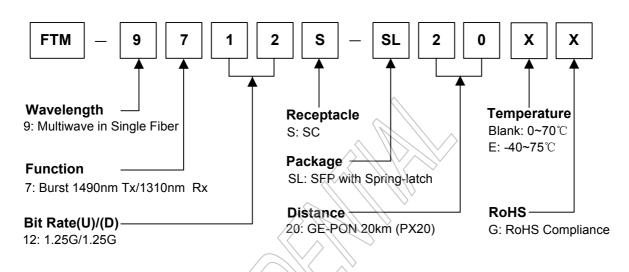
Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.4.

# **Monitoring Specification**

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X(A2h). Please see Figure 8. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.4. The monitoring specification of this product is described in Table 8.



#### Figure 8 EEPROM Memory Map Specific Data Field Descriptions


| Table 8 | Monitoring | Specification |
|---------|------------|---------------|
|---------|------------|---------------|

| Parameter    | Range        | Accuracy | Calibration |
|--------------|--------------|----------|-------------|
| Temperature  | -40 to 80°C  | ±3°C     | External    |
| Voltage      | 3.0 to 3.6V  | ±3%      | External    |
| Bias Current | 0 to 100mA   | ±10%     | External    |
| TX Power     | 0 to 8 dBm   | ±3dB     | External    |
| RX Power     | -32 to -5dBm | ±3dB     | External    |

FTM-9712S-SL20(E)(G) Fiberxon Preliminary Data Sheet



## **Ordering Information**



| Part No.         | Product Description                                                          |
|------------------|------------------------------------------------------------------------------|
| FTM-9712S-SL20   | 1490nm(Tx)/1310nm(Rx), SC Receptacle SFP with Spring-latch, GE-PON OLT, 20km |
| 1 TW-97 123-3E20 | application, Monitoring Function, 0°C ~70°C                                  |
|                  | 1490nm(Tx)/1310nm(Rx), SC Receptacle SFP with Spring-latch, GE-PON OLT, 20km |
| FTM-9712S-SL20E  | application, Monitoring Function, -40°C ~75°C                                |
| FTM-9712S-SL20G  | 1490nm(Tx)/1310nm(Rx), SC Receptacle SFP with Spring-latch, GE-PON OLT, 20km |
| F1W-97125-5L20G  | application, Monitoring Function, 0°C ~70°C, RoHS Compliance                 |
|                  | 1490nm(Tx)/1310nm(Rx), SC Receptacle SFP with Spring-latch, GE-PON OLT, 20km |
| FTM-9712S-SL20EG | application, Monitoring Function, -40°C ~75°C, RoHS Compliance               |

#### **Related Documents**

For further information, please refer to the following documents:

- Fiberxon Spring-latch SFP Installation Guide
- *IEEE Std* 802.3ah<sup>™</sup>-2004
- SFP Multi-Source Agreement (MSA) SFF-8074i Rev 1.0
- SFF-8472 Rev 9.4

## **Obtaining Document**

You can visit our website:

#### http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

FTM-9712S-SL20(E)(G) Preliminary Data Sheet



# **Revision History**

| Reversion | Initiate   | Review     | Approve    | Subject                                                                                                                                                                                                                                                                                            | Release Date |
|-----------|------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Pre 1a    | Frank Zeng | Peter Tang | Peter Tang | Initial datasheet                                                                                                                                                                                                                                                                                  | Aug.8,2005   |
|           |            |            |            | (Doc No. DS3513009-1a)                                                                                                                                                                                                                                                                             |              |
| Pre 1b    | Jacob Cai  | Frank Zeng | Peter Tang | <ul> <li>Revised datasheet</li> <li>Add part FTM-9712S-SL20E</li> <li>Add RoHS part</li> <li>Update Figure 5 and Table 7</li> <li>Modify "Loss of Signal (LOS) Assert Time"<br/>and "Loss of Signal (LOS) Deassert Time" to<br/>(Max.) 500ns in Table 5</li> <li>(Doc No. DS3513009-1b)</li> </ul> | Feb.15,2006  |
| Pre 1c    | Jacob Cai  | Frank Zeng | Peter Tang | Revised datasheet<br>Modify "Receiver Threshold Settling Time" in<br>Table 5 to MAX. 250ns<br>(Doc No. DS3513009-1c)                                                                                                                                                                               | Apr.28,2006  |

FTM-9712S-SL20(E)(G) Fiberxon Preliminary Data Sheet



#### © Copyright Fiberxon Inc. 2006

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact U.S.A. Headquarter: 5201 Great America Parkway, Suite 350 Santa Clara, CA 95054 U. S. A. Tel: 408-562-6288 Fax: 408-562-6289 Or visit our website: http://www.fiberxon.com